Design and development considerations
UAV design and production is a global activity, with manufacturers all across the world. The United States and Israel were initial pioneers in this technology, and U.S. manufacturers have a market share of over 60% in 2006, with U.S. market share due to increase by 5-10% through 2016.[17] Northrop Grumman and General Atomicsare the dominant manufacturers in this industry, on the strength of the Global Hawk and Predator/Mariner systems.[17] Israeli and European manufacturers form a second tier due to lower indigenous investments, and the governments of those nations have initiatives to acquire U.S. systems due to higher levels of capability.[17]European market share represented just 4% of global revenue in 2006.[17]
Degree of autonomy
Early UAVs used during the Vietnam War after launch captured video that was recorded to film or tape on the aircraft. These aircraft often were launched and flew either in a straight line or in preset circles collecting video until they ran out of fuel and landed. After landing, the film was recovered for analysis. Because of the simple nature of these aircraft, they were often called drones. As new radio frequencies gained more available, UAVs were often remote controlled and the term "remotely piloted vehicle" came into vogue. Today's UAVs often combine remote control and computerized automation. More sophisticated versions may have built-in control and/or guidance systems to perform low-level human pilot duties such as speed and flight-path stabilization, and simple prescripted navigation functions such as waypoint following. In news and other discussions, often the term "drone" is still mistakenly used to refer to these more sophisticated aircraft.
From this perspective, most early UAVs are not autonomous at all. In fact, the field of air-vehicle autonomy is a recently emerging field, whose economics is largely driven by the military to develop battle-ready technology. Compared to the manufacturing of UAV flight hardware, the market for autonomy technology is fairly immature and undeveloped. Because of this, autonomy has been and may continue to be the bottleneck for future UAV developments, and the overall value and rate of expansion of the future UAV market could be largely driven by advances to be made in the field of autonomy.
Autonomy technology that is important to UAV development falls under the following categories:
- Sensor fusion: Combining information from different sensors for use on board the vehicle
- Communications: Handling communication and coordination between multiple agents in the presence of incomplete and imperfect information
- Path planning: Determining an optimal path for vehicle to go while meeting certain objectives and mission constraints, such as obstacles or fuel requirements
- Trajectory Generation (sometimes called Motion planning): Determining an optimal control maneuver to take to follow a given path or to go from one location to another
- Trajectory Regulation: The specific control strategies required to constrain a vehicle within some tolerance to a trajectory
- Task Allocation and Scheduling: Determining the optimal distribution of tasks amongst a group of agents, with time and equipment constraints
- Cooperative Tactics: Formulating an optimal sequence and spatial distribution of activities between agents in order to maximize chance of success in any given mission scenario
Autonomy is commonly defined as the ability to make decisions without human intervention. To that end, the goal of autonomy is to teach machines to be "smart" and act more like humans. The keen observer may associate this with the development in the field of artificial intelligence made popular in the 1980s and 1990s such as expert systems, neural networks, machine learning, natural language processing, and vision. However, the mode of technological development in the field of autonomy has mostly followed a bottom-up approach, such as hierarchical control systems[18], and recent advances have been largely driven by the practitioners in the field of control science, not computer science. Similarly, autonomy has been and probably will continue to be considered an extension of the controls field.
To some extent, the ultimate goal in the development of autonomy technology is to replace the human pilot. It remains to be seen whether future developments of autonomy technology, the perception of the technology, and most importantly, the political climate surrounding the use of such technology, will limit the development and utility of autonomy for UAV applications. Also as a result of this, synthetic vision for piloting has not caught on in the UAV arena as it did with manned aircraft. NASA utilized synthetic vision for test pilots on the HiMAT program in the early 1980s (see photo), but the advent of more autonomous UAV autopilots, greatly reduced the need for this technology.
Interoperable UAV technologies became essential as systems proved their mettle in military operations, taking on tasks too challenging or dangerous for warfighters. NATO addressed the need for commonality through STANAG (Standardization Agreement) 4586. According to a NATO press release, the agreement began the ratification process in 1992. Its goal was to allow allied nations to easily share information obtained from unmanned aircraft through common ground control station technology. STANAG 4586 - aircraft that adhere to this protocol are equipped to translate information into standardized message formats; likewise, information received from other compliant aircraft can be transferred into vehicle-specific messaging formats for seamless interoperability. Amendments have since been made to the original agreement, based on expert feedback from the field and an industry panel known as the Custodian Support Team. Edition Two of STANAG 4586 is currently under review. There are many systems available today that are developed in accordance with STANAG 4586, including products by industry leaders such as AAI Corporation, CDL Systems, and Raytheon, all three of which are members of the Custodian Support Team for this protocol.
No comments:
Post a Comment